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A Note about the Pochhammer Symbol

Aleksandar Petojević

Abstract. In this paper we give elementary proofs of the generating
functions for the Pochhammer symbol {(i)n}∞i=0,n∈N.

1. Introduction

For sequence {cn}∞n=0 the generating function, exponential generating
function and the Direchlet series generating function, denoted respectively
by g(x), G(x) and D(x), are defined as [6, p.3,p.21,p.56]

(1) g(x) =
∞∑

n=0

cnxn, G(x) =
∞∑

n=0

cn
xn

n!
, D(x) =

∞∑
n=1

cn

nx
.

Apart from [6], the relevant theory on generating functions can be found in
[1] and Chapter VII in [3].

The Pochhammer symbol (z)n is defined by

(2) (z)0 = 1, (z)n = z(z + 1) · · · (z + n− 1) =
Γ(z + n)

Γ(z)
,

where Γ(z) is the gamma function

Γ(z) =
∫ +∞

0
tz−1e−t d t (<(z) > 0).

For a fixed number b and sequence {an}, the Pochhammer symbol (b)n

obeys Euler’s transformation

(3)
∞∑

n=0

(b)n

n!
anzn = (1− z)−b

∞∑
n=0

(b)n

n!
∆na0

(
z

1− z

)n

,
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where ∆ is the forward difference defined via ∆an = an+1−an. Higher order
differences are obtained by repeated operations of the forward difference
operator ∆kan = ∆k−1an+1 −∆k−1an , so that in general

(4) ∆kan =
k∑

m=0

(−1)m

(
k

m

)
an+k−m .

Applying relations (3) and (4) for an = 1 to obtain the exponential gener-
ating function for the Pochhammer symbol (b)n as follows

(5)
∞∑

n=0

(b)n
zn

n!
= (1− z)−b.

The exponential integral En(x) is defined by

En(x) =
∫ ∞

1

e−xt

tn
d t.

and has the asymptotic series [2, p. 1]

(n− 1)!En(x) = (−x)n−1E1(x) + e−x
n∑

k=0

−2(n− k − 2)!(−x)k,

so that

En(x) =
1

xex

∞∑
k=0

(−1)k(n)k

xk
.

Hence, generating function is given as follows

(6)
∞∑

n=0

(b)n xn = − Eb(−1/x)
xe1/x

.

2. Statement of results

The second possibility of generation of integer sequences by Pochhammer
symbol is that for fixed n ∈ N, terms of the sequence are generated by index
i = 0, 1, 2, 3, 4, . . . , i.e., {(i)n}∞i=0 . In this way, here we give for a fixed n ∈ N
the generating functions for the Pochhammer symbol {(i)n}∞i=0, denoted by

(7) gn(x) =
∞∑
i=0

(i)nxi, Gn(x) =
∞∑
i=0

(i)n
xi

i!
, Dn(x) =

∞∑
i=1

(i)n

ix
.

First of all, for well-known result

(8)
∞∑
i=0

(i)nxi = n!
x

(1− x)n+1
,

for a fixed number n ∈ N, we give elementary proof as follows:
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Proof. Let |x| < 1 and gn be defined by (7). Then
∞∑
i=0

(i)n+1x
i = n

∞∑
i=0

(i)nxi +
∞∑
i=0

i · (i)nxi.

Integrating this equation, we obtain
∞∑
i=0

(i)n+1

i
xi+1 = n

∞∑
i=0

(i)n

i
xi+1 +

∞∑
i=0

(i)nxi+1

∞∑
i=0

(i + 1)nxi+1 = n

∞∑
i=0

(i + 1)n−1x
i+1 +

∞∑
i=0

(i)nxi+1

∞∑
i=0

(i)nxi = n

∞∑
i=0

(i)n−1x
i + x

∞∑
i=0

(i)nxi

(1− x)
∞∑
i=0

(i)nxi = n

∞∑
i=0

(i)n−1x
i.

i.e.,

gn(x) =
n

(1− x)
gn−1(x) =

n(n− 1)
(1− x)2

gn−2(x)

=
n(n− 1)(n− 2)

(1− x)3
gn−3(x) = · · · = n!

(1− x)n−1
g1(x)

Now use g1(x) = x/(1− x)2, to obtain

gn(x) = n!
x

(1− x)n+1
,

which completes the proof. �

In what follows ζ(z), s(n, m) and Pn
k (x) are respectively the Riemann

zeta function, Stirling number of the first kind and the polynomials defined
by

ζ(z) =
∞∑

n=1

1
nz

, (<(z) > 1),

x(x− 1) · · · (x− n + 1) =
n∑

m=0

s(n, m)xk

Pn
k (x) =

k−1∑
j=0

k−j−1∏
m=0

(n−m)
(

k

j

)
xj , (n, k ∈ N).

For <(z) ≤ 1, z 6= 1, the function ζ(z) is defined as the analytic contin-
uations of the foregoing series. Both are analytic over the whole complex
plane, except at z = 1, where they have a simple pole.

We next establish more generating functions given by Theorem 2.1 below.
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Theorem 2.1. For a fixed number n ∈ N we have
∞∑
i=0

(i)n
xi

i!
= xex

[
xn−1 + Pn

n−1(x)
]
,(9)

∞∑
i=1

(i)n

ix
=

n∑
j=1

(−1)j+ns(n, j)ζ(x− j).(10)

Proof of (9). Let Gn(x) = xex
[
xn−1 + Pn

n−1(x)
]

and let [f(x)](k) be the kth

derivative of a function f(x). Since

[Gn(x)](1) = xnex + nxn−1ex + ex
n−2∑
j=0

(
n− 1

j

)
xj+1

n−2−j∏
m=0

(n−m)+

+ ex
n−2∑
j=0

(j + 1)
(

n− 1
j

)
xj

n−2−j∏
m=0

(n−m)

induction on i ∈ N we have

[Gn(x)](i) = exxn + ex
i∑

j=1

(
i

i− j

)
xn−i

j−1∏
m=0

(n−m)+

+ ex
n−2∑
j=0

(
n− 1

j

)
xj+1

n−2−j∏
m=0

(n−m)+

+ ex
i−1∑
s=0

(
i

s + 1

) n−2∑
j=s

(j + 1)!
(j − s)!

(
n− 1

j

)
xj−s

n−2−j∏
m=0

(n−m).

Hence

[Gn(0)](i) =
i−1∑
s=0

(
i

s + 1

)
(s + 1)!

(
n− 1

s

) n−2−s∏
m=0

(n−m)

= i!(n− 1)!n!
i−1∑
s=0

1
(i− s− 1)!(s + 1)!(n− s− 1)!s!

= i!(n− 1)!n! · (n + i− 1)!
i!(i− 1)!n!(n− 1)!

=
(n + i− 1)!

(i− 1)!
= (i)n.

Applying the standard formula for the Taylor series expansion about the
point x = 0 we arrive at the formula in (9), which completes the proof. �

Proof of (10). Using
∞∑
i=1

(i)n+1

ix
= n

∞∑
i=1

(i)n

ix
+
∞∑
i=1

(i)n

ix−1
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we have

(11) Dn+1(x) = nDn(x) + Dn(x− 1).

The recurrence relation for Stirling numbers of the first kind

s(n + 1, j) = s(n, j − 1)− ns(n, j)

produces

(12)
n+1∑
j=1

(−1)j+n+1s(n + 1, j)ζ(x− j) =

= n

n∑
j=1

(−1)j+ns(n, j)ζ(x− j) +
n∑

j=1

(−1)j+ns(n, j)ζ(x− 1− j).

Induction on n and by combining (11) and (12) we obtain the result of the
theorem. �

Note 1. For 1 ≤ k ≤ 4 the polynomials Pn
k (x) are listed below.

Pn
1 (x) = n

Pn
2 (x) = 2nx + n(n− 1)

Pn
3 (x) = 3nx2 + 3n(n− 1)x + n(n− 1)(n− 2)

Pn
4 (x) = 4nx3 + 6n(n− 1)x2 + 4n(n− 1)(n− 2)x + n(n− 1)(n− 2)(n− 3)

Several well-known special cases of the polynomials Pn
k (x) are presented

in Table 1. Let be (x)(m) the falling factorial defined by (x)(m) = x(x −
1) · · · (x−m + 1). Then:

Pn
k (x) =

k−1∑
j=0

(n)(k−j)

(
k

j

)
xj .

Table 1. The special cases Pn
k (x)

Pn
k (x) sequences in [5]

P 1
k (2) 0, 1, 4, 12, 32, 80, ... A001787

P 1
k (3) 0, 1, 6, 27, 108, 405, ... A027471

P 1
k (4) 0, 1, 8, 48, 256, 1280, ... A002697

P 2
k (1) 0, 2, 6, 12, 20, 30, ... A002378

P 3
k (1) 0, 3, 12, 33, 72, 135, ... A054602

Pn
2 (2) 0, 4, 10, 18, 28, 40, ... A028552

Pn
2 (3) 0, 6, 14, 24, 36, 50, ... A028557
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Note 2. Since

lim
i→∞

(i + 1)n

(i)n
= lim

i→∞

(i + n)!(i− 1)!
(i + n− 1)!i!

= 1

the expansion (8) converges for |x| < 1 and (9) for each x ∈ R.
It is clear that the formula (9) could be rewritten in the representation

of the exxn function, since there exists the following relationship

[exxn](n−1) = xex
[
xn−1 + Pn

n−1(x)
]

between exxn and the polynomials Pn
k (x).
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